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Abstract

Large Language Models (LLMs) have emerged as powerful tools across var-
ious domains within cyber security. Notably, recent studies are increasingly
exploring LLMs applied to the context of blockchain security (BS). How-
ever, there remains a gap in a comprehensive understanding regarding the
full scope of applications, impacts, and potential constraints of LLMs on
blockchain security. To fill this gap, we undertake a literature review focus-
ing on the studies that apply LLMs in blockchain security (LLM4BS).

Our study aims to comprehensively analyze and understand existing re-
search, and elucidate how LLMs contribute to enhancing the security of
blockchain systems. Through a thorough examination of existing literature,
we delve into the integration of LLMs into various aspects of blockchain secu-
rity. We explore the mechanisms through which LLMs can bolster blockchain
security, including their applications in smart contract auditing, transaction
anomaly detection, vulnerability repair, program analysis of smart contracts,
and serving as participants in the cryptocurrency community. Furthermore,
we assess the challenges and limitations associated with leveraging LLMs
for enhancing blockchain security, considering factors such as scalability, pri-
vacy concerns, and ethical concerns. Our thorough review sheds light on the
opportunities and potential risks of tasks on LLM4BS, providing valuable
insights for researchers, practitioners, and policymakers alike.
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1. Introduction

As the digital era advances, the confluence of artificial intelligence with
blockchain technology emerges as a groundbreaking development, particu-
larly at the juncture where Large Language Models (LLMs) [1, 2, 3, 4, 5, 6] in-
tersect with the ever-evolving domain of blockchain security [7, 8, 5, 6, 9, 10].
LLMs have risen to the forefront of blockchain security [11, 12], showcasing
profound capabilities in text generation and comprehension [13, 14, 6, 15]),
especially in source code analysis. These abilities mirror human-like profi-
ciency [16, 17]. This transformative impact is attributable to their expansive
datasets, sophisticated architectures, and the deep neural networks that un-
derpin their operational frameworks [1, 18, 17].

The robustness of LLMs in discerning and synthesizing complex patterns
within data positions them as invaluable assets in enhancing the security
measures within blockchain systems [19, 20, 3, 4, 21, 22, 23, 24, 25]. Con-
cretely, the granular analysis of smart contracts [13], the meticulous scrutiny
of transactions [26], and automatic code (resp. text) generation [27] are
among the critical tasks that LLMs are adept at performing with remarkable
efficacy [14, 28, 9].

However, integrating these cognitive powerhouses into blockchain security
is met with an array of challenges that beckon for consideration. Navigating
the intricate dynamics of ever-advancing cybersecurity threats and address-
ing the ethical concerns that accompany AI deployment make this trajectory
as demanding as it is promising. Despite the progress, there is still a lack
of comprehensive work depicting the current application status and future
development prospects of LLM in blockchain security (BS).

To fill the gap, we seek to delve into the multifaceted role of LLMs within
the realm of blockchain security, exploring the comprehensive spectrum of
LLMs on blockchain security (LLM4BS) tasks. We commence by delineating
the contemporary landscape of Large Language Model (LLM) applications
across diverse domains (§2.1), as well as the myriad of security threats im-
plicated by the blockchain technology (§2.2). Then, as illustrated in Table.1,
we elaborate on the incorporation and progression of LLM4BS tasks, involv-
ing smart contract auditing, block transaction detection, contract dynamic
analysis, smart contract development, and cryptocurrency community con-
tributors (§3). Thereafter, we meticulously select three quintessential cases
of LLM4BS tasks to elucidate the state-of-the-art LLM4BS tasks (§4), com-
prising LLM4FUZZ [44], SMARTINV [29], BLOCKGPT [26]. Finally, we
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Table 1: Table of LLM4BS studies

Domains Amounts Publications

Smart Contract Auditing 15

SMARTINV [29], GPTScan [13], David et al. [30],
Karanjai et al. [31], ContractArmor [32], Ortu et al. [33],
ASSBert [34], PSCVFinder [35], LLM4Vuln [36],
TrustLLMf [37], AuditGPT [38], PropertyGPT [39]
Chen et al. [40], Jain et al. [41] and SolGPT [42]

Block Transaction Detection 2 BLOCKGPT [26] and Nicholls et al. [43]

Contract Dynamic Analysis 2 LLM4FUZZ [44] and ACFIX [45].

Smart Contract Development 8
Storhaug et al. [27], karanjai et al. [31], MazzumaGPT [46],
Du et al. [47], GPTutor [48], Petrovic et al. [49],
Zhao et al. [50] and Haque et al. [51]

Cryptocurrency Community
Contributors

5
Trozze et al. [52], Axelsen et al. [53], Liu et al. [54],
ziegler et al. [55] and GPTutor [56]

Miscellaneous 5
compilers [57], zero-knowledge proofs [58],
model training [20, 59] and NFT generation [60]

present an insightful discourse on the challenges presently faced within the
ambit of LLM4BS, and proffer prospective trajectories for future research
and development in this emergent field (§5).

This paper makes the following contributions:

• To the best of our knowledge, after a meticulous review of the existing
literature, we conduct the first systematic examination focusing on the
application of Large Language Models to tasks within the realm of
blockchain security, offering a pioneering exploration of the interplay
between advanced AI and distributed ledger systems.

• In our comprehensive survey, we meticulously chronicle the current
landscape of applications of Large Language Models in the domain of
blockchain security. We delve into a detailed analysis of how Large Lan-
guage Models are employed across various scenarios, from enhancing
the reliability of smart contracts to fortifying the integrity of distributed
ledger systems. This sheds light on the multifaceted contributions of
this cutting-edge technology.

• Based on our study, we rigorously compile and summarize a range
of practical academic achievements related to the application of Large
Language Models (LLMs) in strengthening blockchain security. We also
propose several promising avenues for future research, anticipating that
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these will catalyze substantial advancements and innovations within
this burgeoning intersection of fields.

2. Overview of LLM4BS

We provide basic knowledge about LLM4BS tasks in this section, includ-
ing LLM applications in §2.1 and threats of blockchain security in §2.2.

2.1. Introduction to Large Language Models

This subsection will interpret the definition, characteristics, and diverse
applications of Large Language Models (LLMs)

2.1.1. Definition and Characteristics of LLMs

Large Language Models (LLMs) represent a groundbreaking advancement
in artificial intelligence, particularly within the domain of natural language
processing (NLP) [61]. These models are characterized by their immense
size, depth, and complexity, enabling them to process and generate human-
like text with remarkable fluency and coherence [62]. At the heart of LLMs
lies the transformer architecture, a powerful framework for sequence modeling
that has revolutionized the field of NLP [63].

The defining characteristics of LLMs include their unprecedented scale,
which involves training on vast corpora of text data containing billions or even
trillions of words. This extensive training data allows LLMs to capture the
intricate nuances of language, including syntax, semantics, and pragmatics,
thereby endowing them with a deep understanding of linguistic structures
and conventions [64]. Additionally, LLMs exhibit a high degree of generative
ability, capable of producing text that is contextually relevant and coherent
across a wide range of tasks and domains.

Moreover, LLMs possess a remarkable degree of adaptability, thanks to
their ability to be fine-tuned or specialized for specific applications or do-
mains through techniques such as transfer learning [65]. By leveraging pre-
trained models and fine-tuning them on task-specific datasets, practitioners
can tailor LLMs to address a diverse array of NLP tasks, ranging from sen-
timent analysis and language translation to document summarization and
conversational agents [2].

Furthermore, LLMs demonstrate an advanced understanding of the con-
text within language, enabling them to generate responses or predictions
that are sensitive to the surrounding textual context [66]. This contextual
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Applications of LLMs 

in Various Domains

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Dialogue Systems

Information Retrieval and Summarization Language Translation Scientific Research

Code Generation

• Semantic meaning understanding

• Contextual understanding

• Content creation

• Dialogue systems

• Virtual assistants

• Information extraction

• Summary generation
• Accurate and fluent translations

• Across multiple languages

• User-friendly and efficient means of 

communication

• Generate code snippets

• Understand and generate code

• Analyze and summarize research papers

• Generate hypotheses

• Aid in data interpretation

Figure 1: The various applications of LLM.

awareness is achieved through mechanisms such as attention mechanisms and
positional encodings, which enable LLMs to attend to relevant parts of the
input sequence and model long-range dependencies effectively [67].

Overall, LLMs represent a significant milestone in AI research and have
unlocked new possibilities for human-computer interaction, content genera-
tion, information retrieval, and more. Their ability to understand and gen-
erate natural language at scale has led to transformative applications across
various domains, shaping the future of AI-driven technologies [68].

2.1.2. Applications of LLMs in Various Domains

As depicted in Fig. 1, the versatility and efficacy of LLMs have led to their
widespread adoption across diverse domains and applications, where they
have demonstrated exceptional performance and utility [69]. Some notable
applications of LLMs include:

Natural Language Understanding (NLU): LLMs excel in tasks such
as sentiment analysis, named entity recognition, and text classification, where
the comprehension of semantic meaning and context is paramount [70]. By
leveraging their deep understanding of language, LLMs can accurately ana-
lyze and interpret textual data, enabling tasks such as sentiment analysis in
social media monitoring or categorization of customer feedback.

Natural Language Generation (NLG): LLMs are proficient in gen-
erating human-like text for a variety of applications, including content cre-
ation, dialogue systems, and virtual assistants [71]. Their ability to produce
coherent and contextually relevant responses makes them invaluable for tasks
such as generating product descriptions, composing personalized messages,
or facilitating natural language interactions in conversational interfaces.

Information Retrieval and Summarization: LLMs play a crucial
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role in extracting relevant information from large volumes of text and gen-
erating concise summaries, thereby facilitating efficient information retrieval
and knowledge extraction [72]. Whether summarizing news articles, extract-
ing key insights from research papers, or generating abstracts for documents,
LLMs offer a powerful solution for distilling vast amounts of textual data
into digestible and informative summaries.

Language Translation: LLMs have revolutionized machine transla-
tion by providing more accurate and fluent translations across multiple lan-
guages [73]. By leveraging their vast linguistic knowledge and contextual
understanding, LLMs can produce translations that preserve the meaning,
tone, and style of the original text, enabling seamless communication across
language barriers in various domains, including e-commerce, international
diplomacy, and multicultural communication.

Dialogue Systems: LLMs power conversational agents and chatbots,
enabling natural and contextually appropriate interactions with users [74].
Whether assisting customers with product inquiries, providing personalized
recommendations, or offering customer support, LLM-based dialogue systems
offer a user-friendly and efficient means of communication, enhancing user
experience and engagement.

Code Generation: LLMs are increasingly being used to generate code
snippets and assist developers in programming tasks by understanding and
generating code in various programming languages [71, 75]. By analyzing
code repositories and documentation, LLMs can generate code that adheres
to programming conventions, syntax rules, and best practices, thereby accel-
erating the development process and aiding in code maintenance and debug-
ging [76]

Scientific Research: LLMs support scientific discovery by analyzing
and summarizing research papers, generating hypotheses, and aiding in data
interpretation [77, 69]. By ingesting vast amounts of scientific literature and
domain-specific knowledge, LLMs can assist researchers in navigating the
ever-expanding body of scientific literature, identifying relevant publications,
and extracting valuable insights to inform their research endeavors [78].

These applications underscore the broad utility and transformative po-
tential of LLMs across a wide range of domains and industries, highlighting
their significance in advancing AI capabilities and enabling human-computer
interaction at unprecedented levels of sophistication. As LLMs continue to
evolve and improve, their impact on various fields is expected to grow, driving
innovation, efficiency, and discovery in the years to come.
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2.2. Blockchain Security Fundamentals

This section will discuss the key components and common security threats
of blockchain systems.

2.2.1. Key Components of Blockchain Security

Blockchain security is a multifaceted endeavor aimed at safeguarding the
integrity, confidentiality, and availability of data stored and processed within
a blockchain network [79]. Key components of blockchain security include:

Cryptography: Cryptography lies at the heart of blockchain security,
serving to encrypt data, authenticate participants, and ensure the integrity
of transactions [80, 81]. Techniques such as hashing, digital signatures, and
cryptographic keys are utilized to secure data and verify the authenticity of
transactions on the blockchain [82].

Consensus Mechanisms: Consensus mechanisms are protocols that
govern how transactions are validated and added to the blockchain. By
achieving agreement among network participants, consensus mechanisms en-
sure the immutability and integrity of the distributed ledger [83, 84]. Popu-
lar consensus mechanisms include Proof of Work (PoW) [85], Proof of Stake
(PoS) [86], and Delegated Proof of Stake (DPoS) [87], each with its own
strengths and vulnerabilities.

Decentralization: Decentralization is a core principle of blockchain se-
curity, distributing control and decision-making authority across a network
of nodes [88, 89]. By eliminating single points of failure and reducing the
risk of censorship or manipulation, decentralization enhances the resilience
and security of the blockchain network [90]. However, achieving true decen-
tralization requires careful consideration of factors such as node distribution,
governance structures, and network incentives [91].

Smart Contract Security: Smart contracts are self-executing contracts
with predefined rules and conditions encoded on the blockchain. Ensuring
the security of smart contracts is essential to prevent vulnerabilities, exploits,
and unauthorized access [92, 93, 94]. Techniques such as formal verification,
code auditing, and secure development practices are employed to mitigate
risks associated with smart contracts, including reentrancy attacks, integer
overflow/underflow, and unchecked external calls [95, 96].

2.2.2. Common Security Threats in Blockchain Systems

Despite the robust security measures inherent in blockchain technology,
various security threats and vulnerabilities pose risks to the integrity and
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Consensus-Based Attacks Smart Contract Exploits Auxiliary Service VulnerabilitiesDeFi Protocol Vulnerabilities:

Common Security Threats in Blockchain Systems

• 51% attacks,

• Selfish mining

• Eclipse attacks

• Long-range attacks

• Reentrancy attacks,

• Integer overflow/underflow

• Unchecked external calls

• Gas limit vulnerabilities

• Flash loan attacks

• Oracle manipulation

• Governance exploits

• Exchange hacks

• Wallet vulnerabilities

• Oracle manipulation attacks

Figure 2: The threats in blockchain systems.

functionality of blockchain systems [97, 98]. We illustrate those threats in
Fig. 2. Some common security threats in blockchain systems include:

Consensus-Based Attacks: Consensus-based attacks exploit vulnera-
bilities in the consensus mechanism to compromise the integrity or availabil-
ity of the blockchain network [99]. Examples include 51% attacks, where a
single entity or coalition controls the majority of the network’s hash rate,
enabling them to manipulate transaction confirmations or execute double
spending attacks [100]. Similarly, attacks such as selfish mining, eclipse at-
tacks, and long-range attacks target weaknesses in specific consensus proto-
cols, undermining the security and reliability of the blockchain network [101].

Smart Contract Exploits: Smart contract vulnerabilities pose signifi-
cant risks to blockchain security, as they can be exploited to execute unau-
thorized transactions, drain funds, or trigger unintended behavior [102, 103].
Common smart contract vulnerabilities include reentrancy attacks, where an
attacker repeatedly calls a vulnerable contract’s function before the previ-
ous invocation completes, enabling them to manipulate the contract’s state
and steal funds [104, 105, 106]. Other vulnerabilities, such as integer over-
flow/underflow, unchecked external calls, and gas limit vulnerabilities, can
also be exploited to compromise the security of smart contracts and the un-
derlying blockchain network [107, 108].

DeFi Protocol Vulnerabilities: Decentralized finance (DeFi) proto-
cols introduce new security challenges due to their complex interactions
and composability [109, 95, 110]. Vulnerabilities in DeFi protocols, such
as flash loan attacks, oracle manipulation, and governance exploits, can re-
sult in significant financial losses for users and undermine trust in the DeFi
ecosystem [111, 112, 113]. Additionally, vulnerabilities in specific DeFi pro-
tocols can have cascading effects on other interconnected protocols, ampli-
fying the impact of security breaches and systemic risks within the DeFi
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space [114, 115].
Auxiliary Service Vulnerabilities: Auxiliary services, such as wallets,

exchanges, oracles, and decentralized applications (DApps), serve as entry
points for attackers to exploit vulnerabilities and compromise the security of
blockchain systems [116, 117]. Security breaches in auxiliary services, such
as exchange hacks, wallet vulnerabilities, or oracle manipulation attacks, can
lead to the loss of funds, unauthorized access to user data, or manipulation
of on-chain transactions [118, 119]. Furthermore, the interconnected nature
of auxiliary services within the blockchain ecosystem amplifies the impact of
security breaches, as vulnerabilities in one service can propagate to others,
resulting in widespread disruption and financial losses.

Addressing these security threats and vulnerabilities requires a compre-
hensive approach that encompasses technical measures, best practices, and
community collaboration to strengthen the resilience and security of blockchain
systems [120]. By understanding the key components of blockchain secu-
rity and mitigating common security threats, stakeholders can foster greater
trust, transparency, and adoption in the decentralized ecosystem, driving
innovation and value creation for users worldwide.

3. Taxonomy of LLM4BS tasks

In this section, we introduce a thematic taxonomy devised to system-
atically categorize the body of literature about tasks associated with large
language models for blockchain security (LLM4BS), emphasizing the func-
tion of the LLM within these contexts. Fig. 3 depicts the five applications of
LLM4BS task, involving code audit of smart contracts §3.1, analysis of abnor-
mal transactions §3.2, dynamic analysis of smart contracts §3.3, development
of smart contracts §3.4, participants of cryptocurrency community §3.5, and
other potential directions §3.6.

3.1. LLM as Code auditor on Smart Contracts

The application of LLM in the domain of smart contract code auditing
and vulnerability detection can be succinctly encapsulated as follows: Ad-
vanced tools, such as SMARTINV [29], GPTScan [13], David et al. [30],
Karanjai et al. [31], ContractArmor [32], Ortu et al. [33], ASSBert [34],
PSCVFinder [35], LLM4Vuln [36], TrustLLMf [37], AuditGPT [38], Chen
et al. [40], Jain et al. [41], PropertyGPT [39] and SolGPT [42]. As shown
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Figure 3: The applications of LLM on the task of blockchain security.

in Table.2, these tools powered by Large Language Models signify a monu-
mental shift from traditional, pattern-based analysis methodologies towards
more contextually aware and comprehensive inspection techniques. These
cutting-edge tools extend their analytical prowess beyond static patterns by
knitting together disparate threads of information, including the nuanced as-
pects of natural language documentation that detail the intended functions
and transactional constructs of smart contracts.

The integration of code and contextual data through a multimodal lens
equips such tools with the capacity to unravel complex logical oversights and
identify subtle ”machine un-auditable” bugs, which would otherwise evade
detection. By assimilating and interpreting the richer tapestry of human
language explanations paired with code, LLM-based tools delve deeper into
the intricate web of smart contract interactions. The profound understanding
garnered from this approach not only sheds light on hidden vulnerabilities
but also fortifies smart contracts against the myriad of risks that could lead
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Table 2: Table of tools and models for code auditor

Research Functionality LLM(s) Publication

SMARTINV [29] Model finetuning approach Alpaca etc. SP,2024
GPTScan [13] Logic vulnerability detection GPT-3.5 etc. ICSE,2024
David et al. [30] LLM audit feasibility GPT-4 etc. arXiv,2023
Karanjai et al. [31] LLM code evaluation ChatGPT etc. BRAINS,2023
ContractArmor [32] Rule-based code analysis ChatGPT EUSPN,2024
Ortu et al. [33] Contract automatic repair ChatGPT etc. arXiv,2023
Jain et al. [41] Contract automatic repair GPT-3.5 etc. ICI,2023
ASSBert [34] Contract vulnerability detection BERT JISA,2023
PSCVFinder [35] Contract vulnerability detection CodeT5 ISSRE,2023
Chen et al. [40] Contract vulnerability detection ChatGPT etc. arXiv,2023
LLM4Vuln [36] Vulnerability reasoning enhancement GPT-4 etc. arXiv,2024
TrustLLMf [37] Smart contracts audit CodeLlama-13b arXiv,2024
AuditGPT [38] ERC token audit ChatGPT etc. arXiv,2024
PropertyGPT [39] Formal verification automation GPT-4 arXiv,2024
SolGPT [42] Contract vulnerability detection GPT-2 ICA3PP,2023

to substantial financial repercussions.
In essence, the integration of Large Language Models in smart contract

analysis marks a significant leap in safeguarding the infrastructural integrity
of blockchain technology. It underscores an evolving landscape where arti-
ficial intelligence converges with software development practices to bolster
security measures. This proactive identification and remediation of weak-
nesses within smart contracts, facilitated by the keen insights offered by
LLMs, are instrumental in cementing trust and reliability in blockchain trans-
actions—hence mitigating potential financial liabilities and reinforcing the
bedrock of digital contracts.

Expanding further on the key roles LLMs play, it’s worth noting the
vast potential these models have in enhancing the entire lifecycle of smart
contract development [121]. From generation to maintenance, LLMs facil-
itate the crafting of more secure and robust smart contracts. They do so
by potentially providing recommendations during the development phase,
suggesting best practices, and even generating code snippets that align with
security guidelines. Throughout the auditing process, tools like GPTScan
and SMARTINV can continuously learn and adapt to new patterns of vul-
nerabilities emerging from the evolving landscape of blockchain technology
and cyber threats. This dynamic learning process is pivotal, as it allows for
the development of increasingly refined models capable of detecting even the
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Table 3: Table of tools and models for abnormal transaction analyzers

work function LLM(s) Publication

BLOCKGPT [26] Transaction anomaly detection Transformer arXiv,2023
Nicholls et al. [43] Logic vulnerability detection BERT etc. arXiv,2023

most covert and sophisticated vulnerabilities.
Moreover, the capacity of LLMs to assimilate context and understand

code as it correlates to business logic makes them particularly effective in
scenarios where contractual agreements are complex and layered with intri-
cate logic. This is especially crucial in fields such as finance, where smart
contracts govern transactions involving significant sums and numerous stake-
holders. The vulnerability in such a domain could have catastrophic effects,
not just financially but also in terms of reputational damage for the entities
involved. Hence, the stakes in accurate and effective smart contract auditing
cannot be overstated.

LLMs also enhance collaborative efforts throughout the industry by facil-
itating a common understanding among developers, auditors, and end-users.
Their ability to parse and explain code in natural language bridges commu-
nication gaps, enabling stakeholders with varying levels of technical expertise
to engage in meaningful dialogue regarding the security and functionality of
smart contracts. This collaborative environment fosters a culture of shared
responsibility and proactive engagement in addressing and preempting secu-
rity concerns.

3.2. LLM as Analyzers for abnormal transaction

The application of LLMs for blockchain transaction analysis, such as
BLOCKGPT [26] and Nicholls et al. [43], underscores their crucial role in
conducting real-time monitoring to detect signs of irregular or suspicious be-
havior. These tools in Table 3 represent a significant advancement in the
field, as they provide a more dynamic and adaptable approach to identifying
potential threats within blockchain transactions.

Unlike static, rule-based systems, LLMs are capable of processing and
learning from vast amounts of transaction data in real-time, which enables
them to uncover not just known types of fraudulent activity, but also novel
patterns that emerge as technology and attack methods evolve. By lever-
aging the power of machine learning, these models can constantly update
their understanding of what constitutes normal transactional behavior. This
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Table 4: Table of tools and models for smart contract fuzzer

work function LLM(s) Publication

LLM4FUZZ [44] Fuzzing optimization tool Llama 2 arXiv,2024
ACFIX [45] AC vulnerability repair GPT-4 arXiv,2024

continuous learning process is essential for adapting to the ever-changing
landscape of blockchain technology and the complex strategies employed by
malicious actors.

Furthermore, the adaptability of LLMs is not limited to pattern recog-
nition—they also excel in understanding the context of transactions. This
includes the analysis of smart contract interactions, execution traces, gas
prices, and other transaction metadata that could provide hints about the
legitimacy of a transaction. Contextual analysis allows LLMs to differenti-
ate between legitimate, though unusual, transactional behavior and genuine
anomalies that could indicate fraudulent activities, such as money launder-
ing, phishing, or exploitation of contract vulnerabilities.

In addition to identifying potentially fraudulent transactions, LLMs also
contribute to risk assessment and regulatory compliance. By analyzing the
transaction data against current compliance standards and risk models, LLMs
can assist financial institutions in managing their risk exposure and adhering
to anti-money laundering (AML) and know-your-customer (KYC) regula-
tions. Their sophisticated analysis capabilities can provide valuable insights
to compliance officers and regulatory bodies, allowing for a more proactive
approach to detecting and preventing financial crimes.

In summary, the application of LLMs in blockchain transaction analysis
reflects a commitment to enhancing the security measures of digital financial
systems. By combining deep learning algorithms with extensive transac-
tion datasets, LLMs stand as a formidable line of defense, capable of not
only identifying anomalous activities in real-time but also evolving with the
advancing threats, ensuring a resilient and secure framework for managing
blockchain-based transactions.

3.3. LLM as Fuzzer for Smart Contract

Large Language Models (LLMs) have been increasingly employed to el-
evate the process of fuzzing, particularly in the realm of smart contract se-
curity analysis, such as LLM4FUZZ [44] and ACFIX [45]. This methodol-
ogy in Table 4 involves utilizing LLMs to accurately assess the complexity
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Table 5: Table of tools and models for smart contract developer

work function LLM(s) Publication

Storhaug et al. [27] Vulnerability-constrained decoding GPT-J-6B ISSRE,2023
karanjai et al. [31] Smart contract generation ChatGPT etc. BRAINS,2023
MazzumaGPT [46] Smart contract generation Davinci arXiv,2023
Du et al. [47] Audit capacity evaluation GPT-4 arXiv,2024
GPTutor [48] AI programming assistant GPT-3.5 etc. arXiv,2023
Petrovic et al. [49] Smart contract generation ChatGPT ICSEng,2023
Zhao et al. [50] AI programming assistant GPT-3.5 arXiv,2024
Haque et al. [51] Norm extraction ChatGPT arXiv,2024

and vulnerability likelihood of specific code regions within a smart contract.
Consequently, these metrics serve to guide the direction and focus of fuzzers,
steering them toward code segments that are more likely to harbor potential
security threats.

The application of LLMs to fuzzing exercises significantly elevates the effi-
ciency of these operations by narrowing down the vast state space that fuzzers
typically navigate. This precision-targeted fuzzing approach contributes to
higher coverage and reveals more vulnerabilities than conventional tools, es-
pecially those pertaining to the intricate nature of smart contract code that
traditional methods may overlook [122].

Moreover, this refined fuzzing technique allows for the integration of user-
defined invariants and manually inserted assertions to monitor and manage
the state during fuzzing. This approach can reduce the exploration over-
head and improve the detection of more profound logical issues that regu-
lar fuzzing routines might miss. Evaluations of this LLM-enhanced fuzzing
method within real-world decentralized finance (DeFi) projects have demon-
strated its effectiveness, outperforming baseline fuzzing parameters and un-
covering significant vulnerabilities. These vulnerabilities, if left undetected
and exploited, could potentially result in substantial financial losses.

In summary, the fusion of LLMs into the fuzzing workflow offers a promis-
ing and intelligent solution to the challenges faced in automated security
analysis of smart contracts, underscoring their potential for increasing the
robustness of blockchain-based platforms.

3.4. LLM as Developer for Smart Contract

Recent studies in Table 5, such as Storhaug et al. [27], karanjai et al. [31],
Petrovic et al. [49], Zhao et al. [50], Haque et al. [51], MazzumaGPT [46], Du
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et al. [47] and GPTutor [48], have begun to scrutinize the efficacy and reli-
ability of Large Language Models (LLMs) like ChatGPT and Google Palm2
in the automated generation of smart contracts. These smart contracts are
integral to the blockchain ecosystem, executing agreements without the need
for intermediaries, and their accuracy and security are paramount. The re-
search primarily constructs a testing framework that assesses smart contracts
on multiple fronts, i.e., validity, correctness, efficiency, security, and main-
tainability.

These results have demonstrated that LLMs, despite showing proficiency
in understanding contractual terms and generating syntactically correct So-
lidity code, often produce contracts with considerable security vulnerabili-
ties. This finding signals a critical issue in the code’s operational quality.
The evaluations suggest that while LLMs can streamline the contract cre-
ation process, there’s an underlying risk of generating code that could be
exploited if used without a thorough review.

Importantly, the studies underscore the role of effective prompt engineer-
ing. It emerged that the LLMs’ outputs are significantly influenced by the
specificity and clarity of the prompts, which must be meticulously designed
to minimize the risk of ambiguous or flawed code generation. This is par-
ticularly challenging because generating smart contracts requires precision,
and the semantics of legal terms must be correctly interpreted and applied
by the models.

These works point to the necessity for comprehensive analysis and im-
provement in the methodologies employed by LLMs. There is optimism that
future iterations of LLMs, with better training and prompt design considera-
tions, could enhance the quality and security of AI-generated smart contracts.
It also hints at the potential for these tools to revolutionize contract genera-
tion by reducing the time and effort required, while flagging the urgent need
for more robust security measures and testing methods.

Such research analysis provides an overarching view of the current state of
LLM applications in smart contract generation. The discoveries made serve
as a cautionary note about over-reliance on AI without adequate checks but
also lay out a roadmap for future advancements that could harness AI’s full
potential responsibly.

3.5. LLM as Participants for Cryptocurrency community

Large Language Models (LLMs) such as GPT-3.5 and ChatGPT are
emerging as powerful tools in the cryptocurrency community, such as Trozze
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Table 6: Table of tools and models for Cryptocurrency community participants

work function LLM(s) Publication

Trozze et al. [52] Legal support tools GPT-3.5 etc. arXiv,2023
Axelsen et al. [53] Community moderation support ChatGPT arXiv,2023
Liu et al. [54] Blockchain-based Governance Framework - IEEE Software,2024
ziegler et al. [55] Automating Contextual Classification GPT-4 arXiv,2024
GPTutor [56] Blockchain Revolutionizes Finance DistilBert etc. IEEE Access,2024

et al. [52], Axelsen et al. [53], Liu et al. [54], Ziegler et al. [55] and GPTu-
tor [56], albeit with their respective strengths and weaknesses. Related works
in Table 6 collectively depict a landscape where LLMs are being explored for
their potential to revolutionize governance and legal processes within the
high-stakes, highly volatile realm of cryptocurrency.

Governance emerges as a major theme, as LLMs could contribute signifi-
cantly to the structuring and transparency of this largely unregulated space.
The first document outlines the broader governance challenges faced by AI
systems, suggesting blockchain as a viable solution to introduce verifiability
and accountability. On the other hand, the limitations of LLMs in capturing
the complexities of legal reasoning are highlighted, a concern that is echoed
across the three studies to varying degrees.

The practical applications of these models in legal settings, specifically
detailed in the second and third documents, emphasize their innovative role
in drafting legal complaints. This development is promising for the future
of legal work related to cryptocurrency regulations and litigation, as it sug-
gests that LLMs could alleviate some of the workload from human experts,
although the need for human oversight remains.

While governance and legal assistance dominate the discourse, there’s a
tone of cautious optimism throughout the texts. There is recognition of the
transformative potential of LLMs in the cryptocurrency sector, but also a
clear acknowledgment of the need for further advancement in AI technology
to fully integrate into complex decision-making processes where legal and
ethical considerations are paramount.

In essence, the collective narrative from the three documents converges on
the premise that LLMs hold transformative potential for the cryptocurrency
community’s governance and legal sectors but must overcome challenges in
understanding before they can be fully trusted in autonomous roles.
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Table 7: Table of other potential work

work function LLM(s) Publication

SolMover [57] Language Translation Framework Alpaca arXiv,2024
BasedAI [58] Privacy-Preserving Computation GPT-4 etc. arXiv,2024
BC4LLM [20] Secure Learning Path ChatGPT arXiv,2023
DLLM [59] Dynamic Language Modeling - arXiv,2023
Diffusion-MVP [60] NFT creation platform Stable-Diffusion MM,2023

3.6. Miscellaneous

As displayed in Table 7, LLM is also used in other blockchain security
fields, involving smart contract compilers [57], zero-knowledge proofs [58],
model training [20, 59], NFT generation [60]. We will introduce their appli-
cations in detail in the future.

4. Case study of LLM4BS

In this section, we engage in an in-depth examination through three dis-
tinct case studies, each serving to illustrate and shed light on the diverse
and concrete applications of Large Language Models for Blockchain Systems
(LLM4BS). These cases in Table.8 have been meticulously selected to encom-
pass a broad range of scenarios, comprising LLM4FUZZ [44] §4.1, SMART-
INV [29] §4.2, BLOCKGPT [26] §4.3.

4.1. LLM4Fuzz

As depicted in Fig.4, LLM4FUZZ [44] emerges as an innovative technique
in the cybersecurity landscape, specifically in the niche of smart contract se-
curity within blockchain networks. It intricately combines the prowess of
Large Language Models (LLMs) with fuzz testing methodologies to proac-
tively unearth vulnerabilities that could potentially compromise the integrity
of smart contracts.

Table 8: The table of the three cases on LLM4BS

Research Domain Publications Date faculty

LLM4FUZZ [44] Fuzz arXiv 2024 UC Berkeley
SMARTINV [29] Program analysis IEEE S&P 2024 Columbia University
BLOCKGPT [26] Transaction analysis arXiv 2023 University of California
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Figure 4: The architecture of LLM4FUZZ.

LLMs are highly sophisticated AI models that have made significant
strides in understanding and generating human-like text, and more recently,
they have proven to be adept at comprehending programming languages and
code structure. LLM4FUZZ exploits this capacity by deploying LLMs to
guide fuzzing processes intelligently. This results in a more incisive and nu-
anced exploration of smart contracts, focusing testing efforts on areas that
LLMs determine to be most likely to contain security flaws. By doing so,
LLM4FUZZ succeeds in not only streamlining the anomaly detection process
but also in enhancing its accuracy and depth.

In the world of blockchain technology, where smart contracts serve as
immutable agreements that execute automatically based on coded conditions,
the potential negative impact of a security breach is heightened. Smart
contracts control significant digital assets and are essential to the functioning
of distributed applications (dApps). The immutable nature of blockchain
adds a layer of complexity as deployed smart contracts, once committed to
the blockchain, cannot be altered. Therefore, preemptive security assurances
become crucial to ensuring their reliability and safeguarding the assets and
processes they govern.

LLM4FUZZ provides a novel layer of security analysis by identifying and
prioritizing potential problem areas within smart contract code. This prior-
itization is achieved through the LLM’s learned understanding of code pat-
terns that are historically or commonly associated with vulnerabilities. The
methodology enhances traditional fuzzing strategies, which typically adopt a
more scattergun approach by bombarding the code with random data inputs.
LLM4FUZZ’s targeted testing is not just more efficient but also more effec-
tive in discovering complex vulnerabilities that might otherwise be missed.

Following implementation, LLM4FUZZ has been benchmarked against
existing fuzzing techniques and has consistently demonstrated superior per-
formance. It expedites the vulnerability detection process and increases the
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Figure 5: The architecture of SMARTINV.

breadth of security flaws that can be detected, thereby reinforcing the overall
security posture.

The case of LLM4FUZZ is emblematic of the foresight in AI integration
into cybersecurity regimes. It encapsulates the transformative effects of AI
on improving and redefining existing technological processes, particularly in
areas critical to the burgeoning digital economy. Through its lens, we catch
a glimpse of the future of smart contract security – a future where AI-driven
tools not only anticipate but actively engage in the continuous battle against
cyber threats.

4.2. SMARTINV

Proposed with the intention of enhancing the reliability and security of
blockchain smart contracts, SMARTINV [29] represents a significant break-
through in the field. Its primary function is to infer invariants within smart
contracts, which can be integral in automating the process of identifying elu-
sive bugs that typically elude conventional machine-auditing methods. Fig.5
displays the architecture of SMARTINV.

The unique aspect of SMARTINV lies in its multimodal learning strat-
egy, which acknowledges that truly understanding the operational behavior
of smart contracts requires a multifaceted approach—one that combines and
analyzes different types of information, or modalities. SMARTINV specif-
ically leverages both the static code within a smart contract and dynamic
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transaction data. By correlating code patterns with transaction behaviors,
SMARTINV is poised to uncover invariant conditions that point to a smart
contract’s expected and intended state throughout its lifecycle. This holistic
approach ensures a more thorough examination and superior detection rate
of potential security weaknesses that could lead to future vulnerabilities and
exploits.

The framework operates on the premise that no singular mode of infor-
mation can fully articulate a smart contract’s intricate logic and potential
edge cases. Hence, by fusing multiple data sources, SMARTINV captures a
more accurate depiction of a smart contract’s functionality, leading to a sig-
nificant reduction in false positives and more precise bug detection. Such an
integrated approach to smart contract analysis promotes greater assurance
in their deployment and operation, which is a critical concern in blockchain
applications where security and trust are paramount.

In deploying SMARTINV, the researchers demonstrate its efficacy by test-
ing on a collection of smart contracts, where it shows not only a high degree
of accuracy but also an impressive capability in scalability. SMARTINV
emerges as an invaluable asset in the realm of smart contract development
and auditing, setting a precedent for future methodologies to build upon its
multimodal analysis framework for enhanced security measures in the ever-
evolving domain of blockchain technology.

4.3. BLOCKGPT

As shown in Fig.6, BLOCKGPT [26] serves as a paradigm shift in the
domain of blockchain security, acting as a state-of-the-art Intrusion Detection
System (IDS) specifically engineered to counteract and identify potentially
malicious transactions within blockchain networks. The IDS is underpinned
by a highly sophisticated large language model that has been meticulously
trained with a significant corpus of transactional data from the Ethereum
blockchain, one of the most widely utilized platforms in the industry.

The innovation expressed by BLOCKGPT is its departure from tradi-
tional detection methodologies that largely depend on predetermined rules
or known patterns. Instead, BLOCKGPT adopts a proactive and learning-
based approach that enables it to recognize a spectrum of anomalies, includ-
ing sophisticated and previously unseen threats that could bypass conven-
tional rule-based systems.

Demonstrating the prowess of its detection capabilities, BLOCKGPT has
proven remarkably successful in testing scenarios. It proficiently identified
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Figure 6: The architecture of BLOCKGPT.

and appropriately ranked 49 out of 124 verified attack transactions among the
most abnormal three transactions that have occurred within their respective
victim contracts. This high level of precision points to the system’s refined
anomaly recognition algorithms, indicating substantial progress in the field
of IDS for blockchain.

Beyond its detection accuracy, the efficiency of BLOCKGPT is exempli-
fied by its processing speed, handling transactions at an average rate of 2,284
per second, with relatively minimal deviation. This capability is not merely
theoretical but is indicative of the system’s readiness for deployment in real-
world blockchain environments where real-time monitoring and response are
critical.

The adaptability of BLOCKGPT extends to various blockchain architec-
tures and applications, from finance to smart contracts. This versatility, com-
bined with its real-time processing faculties, provides a robust and scalable
solution that can be integrated seamlessly into existing blockchain infrastruc-
tures to fortify their resilience against a wide array of security threats.

As blockchain technology continues its integration into the fabric of dig-
ital transactions and smart contract deployment, systems such as BLOCK-
GPT represent vital components in the ongoing effort to safeguard these
platforms. With the adoption of machine learning models like the one upon
which BLOCKGPT is built, the future of blockchain IDS appears increasingly
secure, paving the way for safer and more reliable blockchain operations.

5. Future Direction and Challenge of LLM4BS tasks

In delving into the future of Large Language Models for Blockchain Se-
curity (LLM4BS), the academic community contends with a series of pivotal
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focus areas that necessitate concerted scholarly efforts to address inherent
challenges and extend LLM’s utility in blockchain systems. The following
focal points are elaborated to reflect the nuances and complexity inherent in
this field of study:

Interdisciplinary Relationships: The essence of the next stage in
LLM4BS is undeniably grounded in a harmonized interplay among the do-
mains of artificial intelligence, cyber protection mechanisms, and distributed
ledger technologies [123, 124, 12]. This interdisciplinary collaboration is not
merely additive but synergistic, as it draws upon the strengths and insights of
each discipline to forge a formidable shield against cyber animosities. There
is a clarion call within the academic and industrial spheres for a robust al-
liance, emphasizing that the amalgamation of cognitive computing with cryp-
tographic resilience and decentralized architectures can lead to a paradigm
shift in securing blockchain networks.

Regulatory and Compliance Challenges: The shifting sands of reg-
ulatory frameworks demand not only compliance but a proactive engage-
ment with regulatory bodies by scholars and practitioners in the LLM4BS
field [5, 125]. This relationship is reciprocal; as regulatory agencies develop
a deeper understanding of the implications of integrating AI in blockchain,
it is incumbent upon the actors within this space to advocate for regulations
that encourage innovation while maintaining robust security measures. The
dynamic interplay between cutting-edge technology and regulation is a deli-
cate balance to strike, fostering a stable yet flexible platform for growth and
adaptation in blockchain security solutions.

Dynamic Security Threats: The cyber threat horizon is akin to a
chimeric beast—constantly mutating and presenting unforeseen challenges [17,
126]. Security models like LLM4BS must be engineered with inherent plas-
ticity, allowing them to evolve alongside the threats they are designed to
counteract. The integration of LLMs in blockchain security is not a static
solution but a continually adapting safeguard, necessitating an expansive ap-
proach to cybersecurity that accounts for the proliferation of sophisticated
cyberattacks as well as the subtleties of targeted breaches. Sustaining the
integrity of blockchain transactions hinges on the preemptive identification
and neutralization of these mercurial threats.

Ethical Governance and Bias Mitigation: The ethical tapestry
within which LLM4BS operates is rich and complex, mandating a conscien-
tious approach towards the examination and resolution of security practices
that may inadvertently propagate bias or unfair outcomes [127, 128]. The
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quest for equitable algorithms expands beyond the technical realm, engag-
ing with sociocultural dynamics and the moral dimensions of technological
deployments. Therefore, a concerted effort in research that transcends sta-
tistical bias mitigation, touching upon philosophy, sociology, and ethics, is
essential for fostering a climate where AI not only fortifies security but does
so with an underlying commitment to justice and fairness.

Energy Considerations and AI Sustainability: In addressing the
carbon footprint of blockchain operations, there is also a pressing need to
confront the energy-intensive nature of training and deploying Large Lan-
guage Models [129, 130, 131]. The ecological impact of these AI systems
necessitates a dual strategy: enhancing algorithmic efficiency to reduce com-
putational load and exploring alternative energy sources that can power these
activities sustainably. This pursuit of ecological harmonization in the appli-
cation of LLM4BS must be reflective of a broader commitment to sustainabil-
ity across all aspects of blockchain technology, ensuring that the acceleration
of security capabilities does not come at an unsustainable environmental cost.

Ethical Considerations in AI: The role of ethics cannot be overstated
in the trajectory of LLM4BS implementation, as it undergirds every facet of
AI application—from the source of data to the transparency of algorithms
and the accountability for decisions made by or with the aid of AI. Imple-
menting a robust ethical framework for LLM4BS entails a deep interrogation
of the principles guiding AI development, encouraging scrutiny that perme-
ates every layer of model design, deployment, and monitoring. Thus, creating
an environment where trust in AI-fueled security measures is not merely as-
sumed but carefully cultivated through responsible practices.

Data Quality and Access: At the heart of robust LLM4BS deploy-
ments lies the foundational element of data—its caliber, its scope, and the
accessibility afforded to it. Herein lies the challenge: constructing and main-
taining databases that are not only comprehensive and representative but
are also curated with an eye toward enhancing the efficacy of Large Lan-
guage Models in detecting anomalies and reinforcing security parameters in
blockchain transactions. The task extends to crafting protocols that ensure
data integrity and sourcing that conforms to ethical standards, thereby up-
holding the sanctity and reliability of these AI systems.

Navigating these considerations requires a strategic, methodological ap-
proach to utilize the full promise of LLM4BS. This involves a commitment to
ongoing research, rigorous ethical scrutiny, and a concerted effort to evolve in
tandem with the technological and regulatory landscape. With a fundamen-

23



tal understanding of these points, the community is better equipped to pave
the way for LLM4BS to enhance the resilience and efficiency of blockchain
security measures.

6. Conclusion

In conclusion, our review of the integration of Large Language Models
(LLMs) into blockchain security highlights the technological advancements
and intricate challenges presented by this combination of LLM4BS. The po-
tential of LLMs to enhance security protocols in the blockchain is evident,
offering innovative solutions for smart contracts, abnormal transaction de-
tection, and cryptocurrency community development. However, realizing
this potential requires vigilance regarding scalability, privacy, evolving cyber
threats, and the ethical implications of AI. The success of LLMs in blockchain
security hinges not only on continuous technological refinement but also on
ethical practices, regulatory alignment, and informed community engage-
ment. The integration of LLMs into blockchain security marks a transfor-
mative era that necessitates a collaborative approach, balancing innovation
with prudent oversight to forge a resilient and equitable security future.
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